

Information

contained in this
document
represents the
current view of
Microsoft
Corporation on
the issues
discussed as of
the date of
publication.
Because
Microsoft must
respond to
changing market
conditions, it
should not be
interpreted to be a
commitment on
the part of
Microsoft, and
Microsoft cannot
guarantee the
accuracy of any
information
presented after
the date of
publication.

This document is
for informational
purposes only.
MICROSOFT
MAKES NO
WARRANTIES,
EXPRESS OR
IMPLIED, IN
THIS
DOCUMENT.

White Paper

March 1994

FoxPro®
Client-
Server
Architectu
re for
Enterpris
e
Database
Connectiv
ity

Client-
Server
applicati
on
develop
ment
using
Microsof
t®
FoxPro
and
SQL
Server.

© 1994 Microsoft Corporation. All rights reserved.
Printed in the United States of America.

U.S. Patent Number 4955066

Microsoft, FoxPro, Microsoft Access and MS-DOS are registered trademarks, and Rushmore,
Windows and Windows NT are trademarks of Microsoft Corporation. Operating System/2 and
OS/2 are registered trademarks licensed to Microsoft Corporation.

Paradox is a registered trademark of Ansa Software, a Borland company.
Macintosh is a registered trademark of Apple Computer, Inc.
DEC, VAX, and VMS are registered trademarks, and DECnet is a trademark of Digital
Equipment Corporation.
Micro Decisionware is a registered trademark of Micro Decisionware, Inc.
AS/400, DB2, IBM and OS/2 are registered trademarks and DRDA is a trademark of
International Business Machines Corporation.
Novell and Netware are a registered trademark of Novell, Inc.
Oracle is a registered trademark of Oracle Corporation.
SYBASE is a registered trademark and DB-Library and Net-Library are registered trademarks
of Sybase, Inc.
UNIX is a registered trademark of UNIX Systems Laboratories.

Companies, names, and data used in examples herein are fictitious unless otherwise noted.

Contents

µOverview..
...5

Heterogeneous Data Access Issues..
...6

Application Programming Interfaces
6

Data Stream Protocols
7

Interprocess Communication Mechanisms
8

Network Protocols
8

System Catalogs
8

SQL Syntax and Semantics
9

Heterogeneous Database Access Approaches...
...9

Common Interface Architecture
9

Common Gateway Architecture
10

Common Protocol Architecture
10

Achieving Heterogeneous Database Access..
...11

SQL Server Building Blocks (TDS and Net-Library)
11

Microsoft Open Database Connectivity
12

Microsoft Open Data Services
14

Designing FoxPro Client-Server Applications...
...17

FoxPro Connectivity Architecture
15

FoxPro Using the Gateway Approach
17

SQL Syntax and Semantics
17

Considerations Using FoxPro and SQL Server...
...18

Processing/Managing Data
18

Data Integrity
24

Data Security
27

Summary..
...28

References..
...29

Special thanks go to Yair Alan Griver of Flash Creative Management,
Pat Adams of DB Unlimited, and Melissa Dunn of MicroEndeavors,
Inc. for their valuable input and thorough review of the whitepaper.

The ability to access heterogeneous data that resides on different hardware
platforms, different operating systems, different network operating systems, and
different databases is a fundamental need for client-server computing. Client-server
computing is beginning to move into the mainstream of corporate information
systems. With this move comes the need for client-server applications that can
access enterprise-wide data. Much of this data is currently stored in mainframe and
mini-computer databases, and one of the challenges facing implementors of client-
server technology today is how to bring this mission-critical data to the desktop and
integrate it with the functional, easy-to-use graphical user interfaces (GUIs) that are
associated with PC-based tools.

Each computer company, each corporation, and, in some cases, each individual user
has their own definition of what client-server computing means. In order to
eliminate confusion, when talking about the client-server architecture in this white
paper it refers to distributing an application between a front-end client workstation
component and a back-end server component. Ideally, the server has
responsibilities for managing all the requests it receives from other processes,
including request queue management, buffer management, execution of the service,
results management, and notification of service completion. It is the client’s task to
initiate communications, request specific services, acknowledge service completion
notifications, and accept results from its server. User-intensive functions, such as
handling input and displaying data, are left to the user’s FoxPro application. Data-
intensive functions, such as file I/O and query processing, are left to the RDBMS.

In comparison, when an application running on a PC can transparently access data
located on a file server, this is known as the file server architecture. Essentially, the
PC application requests data from a shared file, the networking software
automatically retrieves a block of the file from the server. However, in a scenario
where FoxPro repeatedly requests blocks of data from the network server, heavy
network traffic is produced.

Microsoft FoxPro and SQL Server provide the best of both worlds in client-server
development. FoxPro has superior decision-support capabilities with its
unsurpassed speed through the Rushmore technology. SQL Server provides a high
level of security and data integrity at the database level for robust data entry
systems. These products working together provide the capability to develop on-line
transaction processing and decision support client-server applications.

The purpose of this white paper is to outline some of the basic issues involved in
accessing heterogeneous databases, outline general approaches to achieving
heterogeneous database access, and outline how FoxPro can access heterogeneous
databases. The database connectivity solutions developed by Microsoft are
discussed in depth, with an emphasis on how these products relate to each other.
Finally, this white paper provides some general guidelines for designing
applications for enterprise database connectivity using Microsoft FoxPro, SQL
Server and Microsoft® database connectivity products.

Overview
Microsoft FoxPro and SQL Server White Paper 7

Think of accessing heterogeneous databases as a subset of using distributed
databases. The technical challenges of delivering fully distributed database
management systems (DBMS) in commercial products are difficult and have not yet
been solved. These problems include distributed query processing, distributed
transaction management, replication, location independence, as well as
heterogeneous database access issues. The ability to access heterogeneous
databases (that is, data that resides on different hardware platforms, different
operating systems, different network operating systems, and different databases) is a
fundamental need today, and it can be addressed without having to wait for fully
distributed databases to arrive.

When thinking about the problems involved in accessing heterogeneous databases,
it is useful to consider the problems at different levels. Figure 1 identifies some of
the levels and interfaces encountered when accessing data in a client-server
environment.
Figure 1

µ §
Levels and interfaces in a client-server environment

Some of the areas that need to be addressed when attempting to access
heterogeneous databases are application programming interfaces (APIs), data stream

protocols, interprocess communication (IPC) mechanisms, network protocols,
system catalogs, and SQL syntax.

Application Programming Interfaces
Each back-end database typically has its own application programming interface
(API), through which it communicates with clients. A client application that must
access multiple back-end databases therefore requires the ability to transform
requests and data transfers into the API interface supported by each back-end
database it needs to access.

Client/server applications communicate with SQL Server for Windows NT™
through two application programming interfaces: Open Database Connectivity
(ODBC) and DB-Library™.

ODBC is a C programming language interface for generic database connectivity.
The ODBC interface permits maximum interoperability, allowing a single
application to access diverse database management systems. The application
developer can develop, compile, and ship an application without targeting a specific
DBMS. ODBC achieves interoperability by forcing all clients to adhere to a

Heterogeneous Database Access Issues

standard interface. The ODBC driver will automatically interpret a command for a
specific data source. ODBC has been designed to be a general purpose Call Level
Interface (CLI) for any database backend, including non-relational DBMSs.

ODBC provides the following advantages:

· Microsoft Windows operating system universal data access:
ODBC is the Microsoft strategic direction for access to
relational databases from the Windows platform. New
Windows-based client-server applications should use ODBC
as their database access API. In the future, Microsoft will
also support ODBC on the Macintosh® and other platforms.

· Flexible heterogeneous data access: ODBC was designed as
an API for heterogeneous database access.

· ODBC preserves the semantics of the target DBMS data
types.

· ODBC provides a connection model that is generic and
extensible to allow for different networks, security systems,
and DBMS options.

· Access to “local” data. ODBC enables easy access to local data such as
Xbase or Microsoft Access®. It will treat local data that is not in a
relational format as if it were a relational database. From a single
FoxPro application you can access local and remote data through the
same ODBC API.

DB-Library is an API designed specifically for Microsoft SQL Server or
Sybase® SQL Server. DB-Library is a set of C functions and macros
that allow an application to access and interact with SQL Server. DB-
Library offers a full set of application programming interfaces (APIs)
for: (1) opening SQL Server Connections, (2) formatting queries, (3)
sending query batches to the server and retrieving the resulting data, (4)
bulk-copying data from files or program variables to and from the
server, (5) performing two-phase commit operations, and (6) executing
stored procedures on remote servers.

Data Stream Protocols
Every DBMS uses a data stream protocol that enables the transfer of requests, data,
status, error messages, etc. between the DBMS and its clients. Think of this as a
“logical” protocol. The API uses interprocess communication (IPC) mechanisms
supported by the operating system and network to package and transport this logical
protocol. The Microsoft SQL Server data stream protocol is called Tabular Data
Stream (TDS). Each database’s data stream protocol is typically a proprietary one
that has been developed and optimized to work exclusively with that DBMS. This
means that an application accessing multiple databases must have the ability to use
multiple data stream protocols. Using ODBC helps resolve this problem for
application developers.

Interprocess Communication Mechanisms
Depending on the operating system and network it is running on, different
interprocess communication (IPC) mechanisms might be used to transfer requests
and data between a DBMS and its clients. For example, Microsoft SQL Server on
OS/2® uses named pipes as its IPC mechanism, Sybase SQL Server on UNIX® uses
TCP/IP sockets, and Sybase on VMS® uses DECnetä sockets. The choice of IPC
mechanism is constrained by the operating system and network being used. In a
heterogeneous environment, multiple IPC mechanisms may be involved.

SQL Server for Windows NT has the ability to communicate over multiple
Interprocess Communication Mechanisms. SQL Server communicates on named
pipes (over either Netbeui or TCP/IP network protocols) with clients running
Windows, Windows NT, MS-DOSÒ, and OS/2 operating systems. It can also
simultaneously support TCP/IP Sockets for communication with Macintosh , UNIX,
or VMS clients and SPX sockets for communications in a Novell® Netware®
environment. As the networking components for Banyan® VINES® become
available for Windows NT, it will be supported as well.

Network Protocols
A network protocol is used to transport the data stream protocol over a network. It
can be considered the “plumbing” that supports the IPC mechanisms used to
implement the data stream protocol, as well as supporting basic network operations
such as file transfers and print sharing. Popular network protocols include NetBEUI,
TCP/IP, DECnet, and SPX/IPX.

Back-end databases can reside on a local-area network (LAN) that connects it with
the client application, or it can reside at a remote site, connected via a wide-area
network (WAN) and/or gateway. In both cases, it is possible that the network
protocol(s) and/or physical network supported by the various back-end databases are
different from that supported by the client or each other. In these cases, a client
application must use different network protocols to communicate with various back-
end databases.

System Catalogs
A relational database management system (RDBMS) uses system catalogs to hold
information, or metadata, about the data being stored. Typically, system catalogs
hold information about objects, permissions, data types, and so on. Each RDBMS
product has an incompatible set of system catalogs with inconsistent table names
and definitions. Many client tools and applications use system catalog information
for displaying or processing data. For example, system catalog information can be
used to offer a list of available tables, or to build forms based on the data types of
the columns in a table. An application that makes specific reference to the SQL
Server system catalog tables will not work with another RDBMS such as DB2®
or Oracle®.

SQL Syntax and Semantics
Structured Query Language (SQL) is the standard way to communicate with

relational databases. In a heterogeneous environment, two main problems arise with
respect to SQL syntax and semantics. First, different database management systems
can have different implementations of the same SQL functionality, both
syntactically and semantically (for example, data retrieved by a SQL statement
might be sorted using ASCII in one DBMS and EBCDIC in another; or the
implementation of the UNION operator in different database management systems
might yield different result sets). Second, each implementation of SQL has its own
extensions and/or deficiencies with respect to the ANSI/ISO SQL standards. This
includes support for different data types, referential integrity, stored procedures, and
so on. An application that needs to access multiple back-end databases must
implement a lowest common denominator of SQL, or it must determine what back-
end it is connected to so that it can exploit the full functionality supported.

When developing client-server applications in a heterogeneous environment, it is
important to first understand the different approaches to accessing databases. These
database access approaches can be classified into three possible classes: the
common interface approach, the common gateway approach, and the common
protocol approach, as defined by R.D. Hackathorn in his article “Emerging
Architecture for Database Connectivity” in InfoDB.

Common Interface Architecture
A common interface architecture, shown in Figure 2, focuses on providing a
common API at the client side that enables access to multiple back-end databases.
Client applications rely on the API to manage the heterogeneous data access issues
discussed earlier. Typically, a common API would load back-end–specific drivers to
obtain access to different databases. An example of a common interface
architecture is Microsoft Open Database Connectivity (ODBC), discussed later in
this technical note.
Figure 2

µ §
Common interface architecture

Common Gateway Architecture
A common gateway architecture, shown in Figure 3, relies on a gateway to manage
the communication with multiple back-end databases.

An example of a common gateway architecture are gateways based on Microsoft
Open Data Services, discussed later in this technical note.

Heterogeneous Database Access Approaches

Figure 3

µ §
Common gateway architecture

In his book Introduction to Database Systems, C.J. Date states: “... there are clearly
significant problems involved in providing satisfactory gateways, especially if the

target system is not relational. However, the potential payoff is dramatic, even if the
solutions are less than perfect. We can therefore expect to see gateway technology

become a major force in the marketplace over the next few years.” (page 635)

Common Protocol Architecture
The common protocol approach, shown in Figure 4, focuses on a common data
protocol between the client and server interfaces. Conceptually, this is perhaps
the most elegant way of addressing the problem of heterogeneous data access.
Figure 4

µ §
Common protocol architecture

Two common data protocol architectures are the proposed ANSI/ISO Relational
Data Access (RDA) standard, and the IBM® Distributed Relational Database

Architecture (DRDA™). Both of these architectures are in their infancy, and it is too
early to determine how well they will function as commercial products.

It is important to note that these approaches to enabling heterogeneous database
access are not exclusive. For example, an ODBC driver might connect through an
Open Data Services gateway to a back-end database. Alternatively, an ODBC driver
or Open Data Services gateway that “speaks” DRDA or RDA is possible.

We have looked at the basic issues involved in accessing heterogeneous databases,
and generalized ways of approaching solutions. We will now look at specific
connectivity products from Microsoft that enable heterogeneous data access. The
SQL Server building blocks to data access, Tabular Data Stream (TDS) and the Net-
Library architecture, are an integral part of products enabling connectivity to
heterogeneous databases. We then discuss Microsoft Open Database Connectivity
(ODBC) and the FoxPro Connectivity Kit. Finally, we make recommendations to
help you decide which API, DB-Library or ODBC, to use and identify
considerations that you should be aware of when developing client-server
applications.

SQL Server Building Blocks (TDS and Net-Library)
Tabular Data Stream (TDS) and Net-Library are part of the core SQL Server

Achieving Heterogeneous Database Access

technology that Microsoft connectivity products build on to integrate SQL Server–
based applications into heterogeneous environments. Figure 5 shows how TDS and
Net-Library fit into the client-server architecture of SQL Server–based applications.
Figure 5

µ §
FoxPro and SQL Server building blocks

TDS is the data stream protocol used by Microsoft SQL Server, Open Data Services,
and SYBASE software to transfer requests and responses between the client and the

server. Because TDS can be considered a logical data stream protocol, it must be
supported by a physical network interprocess communication mechanism (IPC)
which is where the Net-Library architecture comes in. A DB-Library application

makes calls to the generic Net-Library interface. Depending on which Net-Library
is loaded, communication with SQL Server is achieved using named pipes, TCP/IP

sockets, DECnet sockets, SPX, and so on.

The Net-Library architecture provides a method of sending TDS across a physical
network connection, as well as a transparent interface to the DB-Library application
programming interface (API) and the SQL Server driver for ODBC. Net-Libraries
are linked in dynamically at runtime. With the Microsoft Windows NT, Windows,
and OS/2 operating systems, Net-Libraries are implemented as dynamic-link
libraries (DLLs), and multiple Net-Libraries can be loaded simultaneously. With the
MS-DOS operating system, Net-Libraries are implemented as terminate-and-stay-
resident (TSR) and only one can be loaded at any given time.

Microsoft Open Database Connectivity
Open Database Connectivity (ODBC) is a universal database connectivity API that
enables applications to access data in a heterogeneous environment of relational and
non-relational database management systems. Based on the SQL Access Group’s
Call Level Interface (CLI) specification, ODBC is an open, vendor-neutral way to
access data stored in a wide range of proprietary databases. ODBC takes the
“common API” approach, discussed earlier, to achieving heterogeneous data access.

The ODBC architecture consists of three components:

l Application. Calls ODBC functions to connect to a data source,
send and receive data, and disconnect.

l Driver Manager. Provides information to an application such as a
list of available data sources; loads drivers dynamically as they are
needed; and provides argument and state transition checking.

l Driver. A DLL that processes ODBC function calls and manages all
exchanges between an application and a specific DBMS. If
necessary, the driver may translate the standard SQL syntax into the
native SQL of the target data source. All translations are the

Note§ The SQL Server Driver for ODBC
also uses Net-Libraries and the TDS protocol
to communicate with SQL Server and Open
Data Services.

responsibility of the driver developer.

The Driver Manager and driver appear to an application as one unit that processes
ODBC function calls. Applications are not limited to communication with one
driver. A single application cam make multiple connections, each through a
different driver, or multiple connections to similar sources through a single driver.

Figure 6 shows the components of the ODBC architecture.
Figure 6

µ §
The ODBC model

Each ODBC driver supports a set of core ODBC functions and data types and,
optionally, one or more extended functions or data types, defined as extensions:

l Core functions and data types are based on the X/Open and SQL
Access Group CLI specification. If a driver supports all core
functions, it is said to conform to X/Open and SQL Access Group
core functionality.

l Extended functions and data types support additional features,
including date, time, and timestamp literals, scrollable cursors, and
asynchronous execution of function calls. Extended functions might
not be supported by a specific driver. Extended functions are divided
into two conformance designations, Level 1 and Level 2, each of
which is a superset of the core functions.

ODBC can be used in different configurations, depending on the database being
accessed. It can be used in one-, two-, or three- tier implementations. Microsoft
and SYBASE SQL Servers and Open Data Services ODBC drivers conform to the
highest level of ODBC extended functionality (level 2), supporting scrollable
cursors and asynchronous communication.

For additional information about ODBC, see the Microsoft ODBC Application
Developer’s Guide and the Microsoft ODBC Driver Developer’s Guide. A
complete list of ODBC drivers can be found in the Microsoft ODBC Driver
Catalog. Microsoft FoxPro can connect to any of the ODBC drivers listed in the
catalog.

Microsoft Open Data Services
Microsoft Open Data Services is a server-side development platform that provides
application services to complement the client-side APIs discussed earlier. Open
Data Services provides the foundation for multithreaded server applications to
communicate with DB-Library or ODBC clients over the network. When the client
application requests data, Open Data Services passes the request to user-defined
routines, and then routes the reply back to the client application over the network.
The reply looks to the client as if the data were coming from SQL Server. Figure 7
illustrates how Open Data Services integrates into an enterprise.

Figure 7

µ §
Open Data Services and an enterprise

Open Data Services allow you to extend your FoxPro applications to reach
enterprise data. The most common use of Open Data Services is as a gateway to
data sources which may not have ODBC drivers available. There is an ODBC

driver for Open Data Services which would provide you with open connectivity to
any data source. Your FoxPro application would connect to the Open Data Services
ODBC driver as if you were connecting to a SQL Server or Oracle database. Two

types of gateways are:

· General-purpose Gateways - that can handle any ad hoc SQL request from a
DB-Library or ODBC client. The Database Gateway from Micro Decisionware,
for example, implements a general-purpose gateway into DB2. A component that
understands the SQL language and can act on SQL requests is essential to the
operation of a general-purpose gateway. This SQL interpreter usually resides in
the back-end database itself (as is the case with DB2), but it can also be
implemented in the gateway.

· Custom Gateways - Not all data server applications need to understand and
respond to SQL requests (for example, a data server application that returns the
contents of a specific flat file as a results set). This type of application could be
designed to respond to only one particular procedure call (such as GetFileA). The
Open Data Services application would define the column names and the data
types of the fields in the flat file, and then return the records in the file to the
requesting client as rows of data. Because this results set would look exactly like
a SQL Server results set, the client could process it. This approach works when
the information required from the existing system is well-defined, not ad hoc in
nature. For ad hoc queries, the better approach is to extract the data from the
existing system and load it into a relational database.

This section gives general guidelines to follow when developing applications for
enterprise database connectivity using Microsoft FoxPro, Microsoft SQL Server and
the Microsoft database connectivity products discussed in the previous section.

FoxPro Connectivity Kit Architecture
Microsoft FoxPro provides immediate and direct access to heterogeneous data
through the architecture of the FoxPro Connectivity Kit. The Microsoft FoxPro
Connectivity Kit consists of a set of libraries and drivers that enable developers to
build client-server applications using FoxPro for MS-DOS or FoxPro for Windows.
The Connectivity Kit gives the developer the ability to query external databases,
send and retrieve data, update external databases, administer external databases, and
execute DBMS specific features such as stored procedures. Essentially, through the
FPSQL libraries in the Connectivity Kit, there is a channel opened directly to the
external data source. (See Figure 8 on the following page.) The SQL syntax is

Designing Fox Pro Client-Server Applications

transmitted directly without being interpreted.

Applications created with FoxPro for MS-DOS can access SQL Server data through
the FPSQL library included in the Connectivity Kit. The FPSQL library,
FPSQL.PLB, is bound to DB-Library, the API which allows connectivity to
Microsoft SQL Server and Sybase SQL Server.

In a Windows environment, the Connectivity Kit includes the FPSQL library that
provides ODBC connectivity. Using this library, applications created with FoxPro
for Windows can connect to any external database, provided that there is an ODBC
driver for that particular DBMS. The ODBC drivers that ship with the Connectivity
Kit are for Microsoft SQL Server and Oracle. For a comprehensive list of ODBC
drivers that FoxPro can connect to, refer to the Microsoft ODBC Driver Catalog.
Figure 8

Microsoft FoxPro client-server architecture.

FoxPro 2.6 Professional Edition Connectivity Updates

Microsoft FoxPro 2.6 adds several new ease-of-use enhancements and dBASE
compatibility extensions. In addition, programmability enhancements have been
made to client-server connectivity. The Connectivity Kit is now included within
FoxPro 2.6 Professional Edition.

Client-server connectivity enhancements include:

· A client-server wizard to assist developers in generating the code necessary to
connect to ODBC data sources. (Further details are provided in the
Processing/Managing Data section.)

· Improved support for handling NULL values from ODBC data sources.
(Further details are provided in the Processing/Managing Data section.)

· Ability to return multiple error messages back to the FoxPro client application.

The Connectivity Kit will now be able to return a list of up to 5 error messages
per connection. They are displayed in the error message window and can be
obtained by calling DBError(). DBError now has a fourth optional parameter
with values from 1 to 5 that indicates which message is being requested from
the list. If the parameter is not specified, the latest error message is returned.

· New DBVersion() function
This function will send back the version number of the connectivity kit that is
currently installed on the FoxPro client. No parameters are required to execute
this function.

· Logical values return (T,F).
· Date fields from the ODBC data source will automatically be converted to

character fields within FoxPro.

FoxPro Using the Gateway Approach
FoxPro for Windows applications are able to access a back-end database through a
direct-connect (two-tier) ODBC driver loaded at the workstation, or by connecting
to an Open Data Services–based gateway using ODBC (a three-tier solution).
FoxPro for DOS applications will be able to access a back-end database through

DB-Library, or by connecting to an Open Data Services–based gateway via
DB-Library.
Figure 9

µ §

FoxPro applications using DB-Library or ODBC can connect to SQL Server and
Open Data Services.

SQL Syntax and Semantics
SQL is a widely accepted industry standard for data definition, data manipulation,
data management, access protection, and transaction control. SQL originated from
the concept of relational databases using tables, indexes, keys, rows, and columns to
identify storage locations. SQL is different from the FoxPro language which is a
record oriented data manipulation language. FoxPro excels in locating specific
rows of data. SQL excels in locating records of data..

Microsoft FoxPro natively supports some standard SQL commands against FoxPro
data only. The SQL commands supported by FoxPro are INSERT INTO, CREATE
TABLE, and SELECT.

ODBC defines a core grammar level that corresponds to the X/Open and SQL
Access Group CAE SQL draft specification. The Core SQL grammar provides the
following:

· Minimum SQL grammar.
Þ Data Definition Language (DDL): CREATE TABLE and DROP

TABLE
Þ Data Manipulation Language (DML): simple SELECT, INSERT,

UPDATE, SEARCHED, and DELETE SEARCHED
Þ Expressions: simple (such as A>B+C)
Þ Data types: CHAR

· DDL: ALTER TABLE, CREATE INDEX, DROP INDEX, CREATE
VIEW, DROP VIEW, GRANT, and REVOKE

· DML: full SELECT, positioned UPDATE, and positioned DELETE
· Expressions: subquery, set functions such as SUM and MIN
· Data types: VARCHAR, DECIMAL, NUMERIC, SMALLINT,

INTEGER, REAL, FLOAT, DOUBLE PRECISION
Beyond the FoxPro SQL and the ODBC SQL implementation, you can use the SQL

language specific to the external database server. The decision as to whether to
use “generic” SQL that is common to all databases being accessed, or to “sense”
the back-end being accessed and make use of SQL extensions such as stored
procedures, depends on the type of application being developed. Using ODBC as
the client API, you can rely on the ODBC driver to take care of some of the
differences in SQL syntax and semantics.

The decision on the level of “generic” versus “specific” SQL to use depends,
among other things, on:

· The set of features you want to access from your applications,

including features that may not be available from all data sources.

· How much interoperability you want to provide.

· How much conditional code you want to include to determine
whether a function or data type is supported by the data source.

· Performance requirements. In general, performance is increased
through the use of specific back-end data source features, and it can
be adversely affected if you use a minimum set of SQL common to
all databases.

Using Microsoft FoxPro, a developer has the best of both worlds. SQL Server (or
any ODBC database) can be utilized to locate sets of information and FoxPro’s
Data Manipulation Language can be used to manipulate the rows of the result
sets from the SQL Server query.

When developing applications using Microsoft FoxPro the question comes up about
when to use Microsoft FoxPro and when to move the data to SQL Server. It is
important to understand when to use both and what the differences are. The
following sections outline some of the advantages to storing data on SQL Server
and how FoxPro can leverage those features.

Processing/Managing Data
Using SQL Server for data storage provides you with advantages such as built in
data validation, referential integrity, user and data security, and the ability to store
larger amounts of data than in FoxPro. SQL Server on the Windows NT platform
can store and manage terabytes worth of data whereas FoxPro can handle 2 GB or a
billion records in a single database, which ever comes first. On the other hand,
FoxPro’s use of the Rushmore™ technology to execute queries against such large
quantities of data is very efficient and therefore can be faster that native database
server queries. With this in mind, a developer may want to split an application up
between SQL Server and FoxPro. For example, a decision support application that
does not modify any data and involves complex queries which slow server
processing, may be best suited to run under FoxPro. Using the speed of Rushmore,
immediate decisions can be made due to the quick response time. The sensitive
data or data that is being dynamically updated should be kept on the backend SQL
Server.

When designing a FoxPro client-server application, the FPSQL function library
requires that a connection handle be acquired in order to communicated with an
external database. Once a connection has been established, this connection handle
will be used for all future FPSQL function calls.

Establishing a connection is the same whether you are connecting to SQL Server,
Oracle, or another ODBC database. Using FoxPro for DOS, the connection is
always to a SQL Server database due to DB-Library. DBConnect() is used to
establish the connection handle. In the event that your application requires

Considerations using FoxPro and SQL Server

connections to multiple data sources, you can open multiple connections. Each
connection is a separate data stream. In order to establish a connection to a SQL
Server called “foxsqlnt” you would type in the following:

handle = DBConnect(“foxsqlnt”,”sa”,””,””)

In the example above, the server name is “foxsqlnt”, the user name is “sa”,
and there isn’t any password.

Querying

In FoxPro, a query extracts information from your tables and places it into another,
temporary table called a cursor. Using the FoxPro Connectivity Kit, FoxPro can
query SQL Server data and place the result set into a FoxPro cursor or table. Once
the data is retrieved, you can use FoxPro to browse, query, analyze, and report data
stored on external data sources. The query that FoxPro uses to request data from
SQL Server must be contained within a DBExec() command written in Transact-
SQL which is the SQL implementation that SQL Server understands.

Using the ODBC API in FoxPro for Windows, ODBC extensions to SQL can be
used through the DBExec() command. ODBC defines 4 different extensions to
ODBC:

1. Date, time and timestamp
2. Scalar functions: numeric, string, and data type conversion functions
3. Outer joins
4. Procedures

The SQL statement syntax is based upon the SQL Access Group’s standard escape
clause to cover vendor specific extensions to SQL. The format is:
“--*(vendor(vendor-name),product(product-name)SQL extension--*)”.

The following examples create the same result set of upper case employee names.
The first statement below uses the escape clause syntax for a scalar function. The
second statement uses the native syntax for SQL Server.

select=--*(vendor(Microsoft),product(ODBC) fn UCASE(NAME)--*)
from employee

select upper(NAME)
from employee

Results that are returned to the Fox application can be returned in a cursor or
table. The cursor is similar to any other table in FoxPro, however it is temporary
and the data can not be modified unless a read/write cursor is created. Cursors
can be fast to work with because they can be held in RAM memory. The cursor
that the results are sent back to can be given a specific alias name or it will
default to the alias name of dbresult. When you want to call the cursor in your
application it is difficult to find out what name has been assigned to the cursor.
If you want to modify the data then the result set should be put into a Fox table in
which you assign a name to. Note that, by putting the result set into a table, it
then becomes a FoxPro table or cursor which is not linked back to SQL Server.
When you modify the table, it is the local table that is changed. When you want
to modify the SQL Server data, you must send an UPDATE request to the server.

The following example modifies the ytd_sales column to reflect the most recent
sales recorded in the sales table in a SQL Server database. This assumes that only
one set of sales is recorded for a given title on a given date and that updates are
current.

handle = DBConnect(“foxsqlnt”,”sa”,””,””)

IF handle<0
WAIT WINDOW “Not Connected”

ELSE
= DBExec (handle,"update titles;

set ytd_sales = ytd_sales + qty;
from titles, sales;
where titles.title_id = sales.title_id;
and sales.date in (select max(sales.date)from sales)")

ENDIF
Complex queries may take time to process, in which case, you may want to
have more control of the type of processing that is done. This can be done
using the DBSetOpt() function to specify the type of result set processing
you want to have in the application. FPSQL functions default to
synchronous processing unless otherwise specified. This means that the
client will not have control of the application back until the processing of the
result set is complete. The other option, asynchronous processing, is when
the control is given back to the client application while the result set is still
being processed. However, each function must be called in the application
repeatedly until it returns a value other than 0. A 0 value indicates that the
database server is still executing the query.

Here is an example of how to change from synchronous (Batch) processing to
asynchronous (Batch) processing and display the result set in a browse window:

handle = DBConnect(“foxsqlnt”,”sa”,””,””)
IF handle>0

WAIT WINDOW “Successfully connected”
result = DBSetOpt(handle,”Browse”,”ON”)
result = DBSetOpt(handle,”Asynchronous”,1)
IF result>0

retcode=0
DO WHILE (retcode=0)

retcode=DBExec(handle,”select * from bigtable”)
ENDDO

ENDIF
ELSE

WAIT WINDOW “Unable to connect.”
ENDIF

In addition to the type of processing you can request, multiple result sets can
be handled in a batch mode or a non-batch mode. Batch mode processing,
which is the default setting, will only return results from the DBExec() call
once all of the individual result sets have been received. When Non-Batch
mode processing is selected, the first result set is returned by the DBExec()
call. In order to receive the rest of the results, your FoxPro application must
call DBMoreRes() continuously until there are no additional results
available. No more results are available when a value of 2 is returned.

Transaction Processing

Transaction processing guarantees the consistency and recoverability of SQL Server
databases. A transaction typically consists of several SQL commands that read and
update the database, but isn’t actually executed until a commit command is issued.

By definition, transaction processing guarantees either that an entire transaction is
completed and all resulting changes are reflected in the database or that the
transaction is rolled back to a predetermined save-point without changing the
database. Transactions can even span multiple servers.

Transaction processing assures that all transactions are performed as a single unit of
work - even in the presence of a hardware problem or general system crash. For
example, in the scenario below it is crucial that the user-defined transaction be

processed in its entirety or not at all:
BEGIN TRANsaction X

Debit savings account $1,000
Credit checking account $1,000

COMMIT TRANsaction X
User-defined transactions are created by surrounding SQL data modification
statements with BEGIN TRANsaction and COMMIT TRANsaction
commands. Without these commands, SQL Server treats each SQL
command it receives as a single transaction. Uncommitted transactions can
be canceled by rolling them back, ROLLBACK TRANsaction.

The key component to transaction processing is the write-ahead transaction log that
is maintained by SQL Server. This log ensures that data can be recovered. When a
request is made to modify a database is received, a copy of both old and new states
of the database’s affected portions is recorded in the transaction log. These changes
are always made before they are made to the database itself. At any point in time,
SQL Server knows which transactions are in progress and which have been
committed.

During recovery from a system failure, SQL Server uses the transaction log to
restore that database to a consistent state by backing out incomplete transactions.
The log is also used to ensure that all changes associated with committed
transactions are fully reflected in the database.

Using the FoxPro Connectivity Kit, the need for using BEGIN TRANsaction and
END TRANsaction has been simplified. You can specify how you want FPSQL to
manage the transaction processing within the application. Using the DBSetOpt()
command, the execution of DBExec() and DBMoreRes() functions is modified
based upon the mode of processing you request. You can specify the following
modes of processing:

· Auto: every SQL statement is considered a complete transaction that is
automatically committed.

· Manual: for each SQL statement, if no transaction is open, the driver begins a
transaction which will remain open until the application commits or rolls back a
transaction using DBTransact().

In the example below, each DBExec() command will be embedded in a transaction.
handle = DBConnect(“foxsqlnt”,”sa”,””,””)
IF handle>0

WAIT WINDOW “Successfully connected”
result = DBSetOpt(handle,”Transact”,”A”)

ENDIF
Support for NULL Fields

SQL Server has a facility built in that prevents NULLs from slipping into columns
where they do not belong. A NULL in SQL Server indicates that the user has not
made an entry into a field. The value is unknown rather than blank or 0.
Essentially, a NULL indicates that if the user does not make an entry at insert time
and there is no default entry for this column, SQL Server assigns the value NULL.

FoxPro does not know the concept of a NULL value when passed from SQL Server
and will show inconsistent results. Close equivalents in FoxPro are completely
blank strings (“”), completely blank dates ({_/_/_}), and zero in the case of a
numeric field. However, there is a way to work around the issue of accepting
NULL data.

When designing a FoxPro application that queries SQL Server tables, it is helpful to
know whether or not the columns in the table allow NULLs. You can get this
information by typing in the stored procedure sp_help from the FoxPro command
window or ISQL/W, the query tool that ships with SQL Server.

For example, sp_help authors brings back the following information on the authors
table:

Name Owner Type

authors dbo user table

Data_located_on_segment When_created

default Jul 27 1993 9:54AM

Column_name Type Length Nulls Default_name Rule_name

au_id id 11 0 (null) (null)
au_lname varchar 40 0 (null) (null)
au_fname varchar 20 0 (null) (null)
phone char 12 0 phonedflt (null)
address varchar 40 1 (null) (null)
city varchar 20 1 (null) (null)
state char 2 1 (null) (null)
zip char 5 1 (null) ziprule
contract bit 1 0 (null) (null)
In the table above, there are four columns that will allow NULL values; address,
city, state, and zip. The “1” in the NULL column indicates that NULLs are
allowed. You will also notice that this same command lists the defaults and rules
that are bound to a particular column.

There are several ways to handle NULL values from a backend data source once the columns
have been identified that may contain NULL values. The recommended option is to use the
new feature within FoxPro 2.6 Professional Edition that allows constants for NULL values
from the external data source to be defined by a user.
Users can define four types of NULL values:

· “CharNull” size 30
· “IntNull” size 20
· “FloatNull”size 20
· “DateNull” size 23
The values can be set/get using the DBSetOpt() and DBGetOpt()

functions:
handle = DBConnect(“foxsqlnt”,”sa”,””,””)
IF handle>0

WAIT WINDOW “Successfully connected”
result = DBSetOpt(handle,”FloatNull”,”9999999.9999999”)

ENDIF

If a constant for NULL values is not specified, the default for all
cases is an empty string, NULLs become spaces in FoxPro.

The second option is to use the ISNULL function within SQL Server to change the value. The
ISNULL function will replace each NULL entry it finds with a value that you specify. For
example:

This SELECT statement will not catch any NULL entries:
handle = DBConnect(“foxsqlnt”,”sa”,””,””)
IF handle>0

WAIT WINDOW “Successfully connected”
= DBExec (handle,"select au_lname, phone, state from authors")

ELSE
WAIT WINDOW “Unable to Connect”

ENDIF
This SELECT statement will catch NULL entries for the state column and
change the NULL value to an asterisk (*):
handle = DBConnect(“foxsqlnt”,”sa”,””,””)
IF handle>0

WAIT WINDOW “Successfully connected”
= DBExec (handle,"select au_lname, phone, isnull(state, *)")

ELSE
WAIT WINDOW “Unable to Connect”

ENDIF
For columns with a character datatype, you may want to substitute an
asterisk (*) or a word, such as “unknown”, for a NULL value. Numeric
columns with NULLs could be replaced with a 0.

Client-Server Query Wizard

Microsoft FoxPro 2.6 Professional Edition includes powerful new wizards, designed
to make everyday database tasks easier for users and developers. In order to
simplify connectivity to heterogeneous databases, a Client-Server Wizard has been
included. The Client-Server Wizard will generate the code necessary to connect to
a remote database and execute a query against the data. Once the connection code
has been generated it can be reused within other FoxPro applications.

The wizard stores the connectivity code in a program file with a .CSQ extension
instead of a .PRG extension. Here is an example of the code generated:

m.passwd=""
WAIT WINDOW NOWAIT "Connecting..."
m.Handle=DBCONNECT("FOXSQLNT","sa",m.passwd)
WAIT CLEAR
m.RetVal=DBExec(m.Handle,"use pubs")
mFldLst='titles.title,titles.pub_id,titles.type,titles.price'
mFrom='titles'
mWhere=""
mOrderBy=' ORDER BY titles.title'
mGroupby=""
m.RetVal=DBExec(m.Handle,"SELECT "+mFldLst+" FROM ;

"+mFrom+mWhere+mGroupBy+mOrderBy,"Result")
Each of the variables represents a step of the wizard. For example,
m.Handle represents Step 1 that asks which ODBC data source do you want
to connect to.

Data Integrity
Relational databases organize data in a simple, tabular form, and provide many
advantages over other databases. One of the key advantages is the ability of an
external database to automatically maintain integrity between entities. This data
integrity is initially set up by the database administrator, the application developer
does not have to worry about programming this into the database application.
FoxPro does not have the ability to enforce data integrity.

It is possible however to provide some forms of data integrity in FoxPro. However,
this is done programmatically, it can be changed at any time, and the integrity
relationships must be put into each FoxPro application.

When designing applications that access company data, it is important that the data
is protected and consistent. Incorporating data integrity rules and business policies
with your data will ensure that the data does not become corrupt or disorganized.

FoxPro can maintain the integrity of the data programmatically. SQL Server
enforces data integrity within the database itself, guaranteeing that complex
business policies will be followed by all client-server applications. By storing the
data on SQL Server, all of your FoxPro applications can take advantage of advanced
data integrity features such as user-defined data types, defaults, rules, stored
procedures, and triggers.

User-Defined Data Types

SQL Server provides an extensive list of pre-defined system datatypes for
developers to use, such as: char, int, varchar, etc. In addition, FoxPro developers
have the ability to create their own datatypes to supplement the system datatypes.

For example, a state_code datatype could be defined as two characters (char[2]).
The Transact-SQL code is:

sp_addtype state_code, ‘char(2)’

User-defined datatypes can be created within FoxPro using a VALID or
WHEN clause in an application. These datatypes can be shared among
multiple applications by copying the code from application to application.
The user-defined datatypes in SQL Server are created once, stored in one
central location, and can be shared throughout the database. The integrity of
your data is consistent with minimal programming. Another advantage of
user-defined datatypes is that rules and defaults can be bound to them for use
in multiple tables, and tailored to specific applications.

Defaults

Defaults allows that application develop to specify a value that SQL Server inserts
if no explicit field value is entered into a particular column. For example, the
current date could be set as a default value for a purchase_date field in a customer
purchase record. If a user or the FoxPro application doesn’t make an entry in the
purchase_date field, SQL Server will automatically insert the current date.

Rules

In FoxPro you can create a PICTURE clause to specify how fields, memory
variables, and arrays are edited and displayed. Rules are similar to the PICTURE
clause in an @...GET command. However, rules also provide integrity constraints
that go beyond the column datatype parameters to enforce business policies.
Whenever values are entered into a database SQL Server checks it against any rule
that has been bound to that column. A rule can require that a value must match a
particular pattern, match one of the entries in a specified list, or fall within a
particular range.

Triggers

Triggers enforce referential integrity at the table and view level to supply cascading
deletions and to supply cascading updates. In essence, triggers are a special type of
stored procedure that are explicitly called for execution and triggers are
automatically invoked by SQL Server whenever an attempt is made to modify the
data that they protect. Triggers are invoked when an INSERT, UPDATE, or
DELETE action is called.

Triggers can be nested 16 levels deep for a cascading integrity check of the database
tables. If a trigger changes a table on which there is another trigger, the second
trigger activates and can then call a third trigger, and so on.

The FoxPro VALID and WHEN clauses are similar to triggers. VALID and WHEN
clauses are used for data validation but can be used in different ways throughout an
application which could lead to gaps in your code. These clauses also can be very
precise for a particular field, allowing modification of the data one field at a time.
For integrity checks among tables, this get very complex and affect productivity.

Although integrity checks may be faster within FoxPro, you will have to copy
common code to each application. By keeping integrity checks within the external
database, the integrity rules and triggers are maintained with the data in one place.
When changes are made to your corporation’s integrity rules, they are made at the
server in one place. The FoxPro client application will not have to be modified. It
is best, when accessing SQL Server data from Fox, to leave the integrity of the SQL
Server tables up to that database engine and use the VALID and WHEN clauses for
field validation within the FoxPro client applications.

Stored Procedures

Every time a SQL command is sent to SQL Server for processing, the server must
first parse the command, check to make sure that the syntax is correct, check to see
if the client has the correct permissions necessary to execute the command, and
create a query execution plan to process the request. For complex queries this
process can take some time to process. Stored procedures ensure consistent access
to data resources and increase the speed of query execution. Essentially, stored
procedures are groups of compiled SQL statements that are stored on SQL Server
for later recall.

Stored procedures have already been through the parser, the query optimizer, and
pre-compiled in the procedure cache waiting to be executed. (See Figure X below.)
SQL Server stores this compiled version in cache and uses it to process subsequent
calls. As a result of being precompiled, stored procedures will dramatically
increase the execution speed of your query. Stored procedures will also reduce your
network traffic because you are sending a small data stream.
Figure 10

µ §

Stored procedures will be recompiled for efficiency whenever changes are
made to objects that they affect. In addition, stored procedures will accept
parameters, so a single procedure could be used by multiple applications
using different input data.

FoxPro does not have an equivalent function to a stored procedure. However,
FoxPro developers can code complex queries and transactions into stored
procedures and then invoke them directly from any FoxPro application, whether
that be in Windows or MS-DOS. In addition, using stored procedures on the server
side can reduce the amount of Transact-SQL code required in the client application.

For example:

The query below finds all au_ids in the titleauthor table for authors who make less

than 50 percent of the royalty on any one book, and then selects from the authors
table all author names with the au_ids that match the results from the titleauthor
query. The following FoxPro statement will have to be added to your application:

handle = DBConnect(“foxsqlnt”,”sa”,””,””)
IF handle>0

WAIT WINDOW “Successfully connected”
= DBExec (handle,"select au_lname, au_fname from authors;

where au_id in (select au_id from titleauthor;
where royaltyper < 50")

ELSE
WAIT WINDOW “Unable to Connect”)

ENDIF
To simplify the FoxPro code within your application, create a stored procedure on
SQL Server called get_authinfo that executes a query to retrieve the same data from
the customers and orders tables:

create proc get_authinfo as

select au_lname, au_fname
from authors
where au_id in

(select au_id
from titleauthor
where royaltyper < 50)

When using the stored procedure, the FoxPro code will be the following:
handle = DBConnect(“foxsqlnt”,”sa”,””,””)
IF handle>0

WAIT WINDOW “Successfully connected”
= DBExec (handle,"exec get_authinfo")

ELSE
WAIT WINDOW “Unable to Connect”)

ENDIF
Extended stored procedures

SQL Server provides a way to dynamically load and execute a function within a
DLL in a manner identical to a stored procedure. Actions external to SQL Server
can be easily triggered and external information returned. Both return status codes
and output parameters identical to their counterparts in regular stored procedures are
also supported.

Examples of extended stored procedures are supplied with SQL Server. One is
xp_cmdshell. This function allows any Windows NT command or process to be
executed from within SQL Server. For example, you can use xp_cmdshell from
within a trigger to send a broadcast on the network about changes that have been
made to the data. Another example would be a trigger that could test to see if the
inventory has fallen below a certain level, automatically execute a reorder
transaction, and send a Microsoft Mail message to the purchasing manager via
MAPI.

Data Security
SQL Server implements comprehensive user-level security protections on database
objects (tables, records, views, and so forth) and SQL commands. It also supports
column-level security, where access to particular columns in a database can be
restricted to certain users. Stored procedures can also be used to permit certain
users to execute specific operations, without giving them permissions to access the
underlying data.

All security information and logic is stored in the data dictionary, where it can be
accessed and updated by the system administrator. Since all security is handled by
SQL Server, FoxPro client-server applications can safely ignore these issues. This

security scheme is in addition to that imposed by Microsoft Windows NT™
Advanced Server.

Views

In SQL Server, views allow users to see and modify a subset of information
contained within an existing database table or tables. For example, a company
employee database might contain name, department, supervisor, performance
rating, and salary columns (fields). A view of the table may contain only the name,
department, and supervisor columns. Employees who do not need access to salary
information can be given access to this predefined view rather than the actual table
which contains sensitive information.

Views are created dynamically and behave like other tables - they can be displayed
and operations performed on them. When data seen through a view is modified, the
data in the underlying table(s) is modified as well. Conversely, changes to data in
the underlying table(s) are automatically reflected in the views derived from them.

 Users can only query and modify the data they see. The rest of the database is not
accessible. By defining different views and selectively granting permissions on
them, a user, or any combination of users, can be restricted to different subsets of
the data.

This white paper has addressed some of the issues involved in enabling FoxPro
client-server applications to access enterprise data stored in a wide variety of
heterogeneous databases. FoxPro has powerful database functionality within, but,
combined with the security, transaction processing, and data integrity of SQL
Server, you can develop powerful client-server applications that access and
maintain mission critical data.

Date, C.J. An Introduction to Database Systems, Volume 1 (5th edition). Addison-
Wesley, 1990.

Hackathorne, R.D. “Emerging Architectures for Database Connectivity.” InfoDB,
January 1991.

To receive more information about Microsoft FoxPro or Microsoft SQL Server§,
contact Microsoft Inside Sales, Systems Software, at 1-800-227-4679.

FoxPro Connectivity Kit User’s Guide

FoxPro Goes Client-Server: DB-Library programming techniques for
client applications
part number 098-30194

Summary

References

Additional Information

Microsoft SQL Server Transact-SQL Reference manual

Microsoft Open Data Services: Application source book
part number 098-32078

Discussion of the ANSI SQL Standard and Microsoft SQL Server
part number 098-34656

	White Paper
	FoxPro® Client-Server Architecture for Enterprise Database Connectivity
	Client-Server application development using Microsoft® FoxPro and SQL Server.

	Overview
	Heterogeneous Database Access Issues
	Heterogeneous Database Access Approaches
	Achieving Heterogeneous Database Access
	Designing Fox Pro Client-Server Applications
	Considerations using FoxPro and SQL Server
	Summary
	References
	Additional Information
	µ §
	Application Programming Interfaces
	Data Stream Protocols
	Interprocess Communication Mechanisms
	Network Protocols
	System Catalogs
	SQL Syntax and Semantics
	Common Interface Architecture
	µ §

	Common Gateway Architecture
	µ §

	Common Protocol Architecture
	µ §

	SQL Server Building Blocks (TDS and Net-Library)
	Microsoft Open Database Connectivity
	l Application. Calls ODBC functions to connect to a data source, send and receive data, and disconnect.
	l Driver Manager. Provides information to an application such as a list of available data sources; loads drivers dynamically as they are needed; and provides argument and state transition checking.
	l Driver. A DLL that processes ODBC function calls and manages all exchanges between an application and a specific DBMS. If necessary, the driver may translate the standard SQL syntax into the native SQL of the target data source. All translations are the responsibility of the driver developer.
	µ §

	l Core functions and data types are based on the X/Open and SQL Access Group CLI specification. If a driver supports all core functions, it is said to conform to X/Open and SQL Access Group core functionality.
	l Extended functions and data types support additional features, including date, time, and timestamp literals, scrollable cursors, and asynchronous execution of function calls. Extended functions might not be supported by a specific driver. Extended functions are divided into two conformance designations, Level 1 and Level 2, each of which is a superset of the core functions.

	Microsoft Open Data Services
	µ §

	FoxPro Connectivity Kit Architecture
	FoxPro 2.6 Professional Edition Connectivity Updates

	FoxPro Using the Gateway Approach
	µ §

	SQL Syntax and Semantics
	· Minimum SQL grammar.
	Þ Data Definition Language (DDL): CREATE TABLE and DROP TABLE
	Þ Data Manipulation Language (DML): simple SELECT, INSERT, UPDATE, SEARCHED, and DELETE SEARCHED
	Þ Expressions: simple (such as A>B+C)
	Þ Data types: CHAR
	· DDL: ALTER TABLE, CREATE INDEX, DROP INDEX, CREATE VIEW, DROP VIEW, GRANT, and REVOKE
	· DML: full SELECT, positioned UPDATE, and positioned DELETE
	· Expressions: subquery, set functions such as SUM and MIN
	· Data types: VARCHAR, DECIMAL, NUMERIC, SMALLINT, INTEGER, REAL, FLOAT, DOUBLE PRECISION
	Processing/Managing Data
	Querying
	Transaction Processing
	Support for NULL Fields
	Client-Server Query Wizard

	Data Integrity
	User-Defined Data Types
	Defaults
	Rules
	Triggers
	Stored Procedures
	Extended stored procedures

	Data Security
	Views

	FoxPro Connectivity Kit User’s Guide
	FoxPro Goes Client-Server: DB‑Library programming techniques for client applications part number 098-30194
	Microsoft SQL Server Transact-SQL Reference manual
	Microsoft Open Data Services: Application source book part number 098-32078
	Discussion of the ANSI SQL Standard and Microsoft SQL Server part number 098-34656

